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R
ecent advancements in super-resolu-
tion fluorescence microscopy have
extended the spatial resolution down

to tens of nanometers.1,2 Emergence of
these techniques has opened a whole new
world of structural detail in microscopic
imaging of biological systems. One of the
widely used super-resolution microscopy
approaches is the stochastic switching
method, which includes (fluorescence)
photoactivation localization microscopy
((F)PALM)3,4 and stochastic optical recon-
struction microscopy (STORM).5 This ap-
proach relies on fluorophores that can
be switched between a fluorescent on-
and a nonfluorescent off-state. Unlike
standard fluorescence microscopy, which
involves excitation of all fluorophores
within the field of view, only a few, spar-
sely distributed molecules are randomly
photoactivated to their fluorescent on-
state, while leaving the surrounding mol-
ecules in the off-state. By repeated image
acquisition (10�500 frames/s), up to 105

images are collected and subsequently
analyzed by specialized software to iden-
tify the positions of individual molecules

to a precision that markedly exceeds the
diffraction limit.
In general, this data analysis can be di-

vided into three steps, (1) molecule detection,
where molecule candidates are identified
within the raw image; (2) molecule localiza-
tion, where the identified candidates are
analyzed to extract their physical param-
eters, most importantly, the centers of grav-
ity of their point spread functions (PSFs);
and finally (3) image reconstruction, where
fitted molecules are plotted as a density
map depicting the spatial distribution of
all emitters with a resolution in the range
of a few tens of nanometers. Recently, much
effort has been devoted to improve step 2,
the localization of the individual markers, to
achieve significant improvements in the
precision and speed of the algorithm.6�10

Once molecules can be precisely localized
by these advanced algorithms, the final
image quality of the localization-based
super-resolution microscopy critically de-
pends on the density of identified mol-
ecules. However, far less attention has
been paid to improve the initial molecule
detection step, perhaps based on the
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ABSTRACT In localization-based super-resolution microscopy, individual fluorescent markers are

stochastically photoactivated and subsequently localized within a series of camera frames, yielding a final

image with a resolution far beyond the diffraction limit. Yet, before localization can be performed, the

subregions within the frames where the individual molecules are present have to be identified;oftentimes

in the presence of high background. In this work, we address the importance of reliable molecule

identification for the quality of the final reconstructed super-resolution image. We present a fast and robust

algorithm (a-livePALM) that vastly improves the molecule detection efficiency while minimizing false

assignments that can lead to image artifacts.
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assumption that falsely identified molecules can be
excluded later by multiparameter (total signal counts,
width of the point spread function, background, and
localization precision) filtering.
Despite smaller attention among the super-

resolution community, the molecule detection step
has been extensively studied among the broader im-
age-processing field.11,12 The performance of any de-
tection algorithm critically depends on the signal-
to-noise ratio (SNR)13 and the signal-to-background
ratio (SBR).14 Typically, a molecule detection algorithm
utilizes a single set of initial parameters, such as
intensity count and SNR, for thresholding. However,
setting the proper thresholds for signal detection is a
major challenge in working with biological samples
because both SNR and SBR may fluctuate over time
and even within the same imaging area. This temporal
and spatial heterogeneity in the SNR and SBR distribu-
tions may arise from the inherent nature of the biolog-
ical sample, photobleaching of the fluorophores, or
from common technical issues such as changes in the
laser intensity and uneven sample illumination. Impro-
per thresholding can result in either missing valid
molecules or mistaking noise for real molecules. Conse-
quently, there is a clear need to develop a more robust
approach to setting a threshold for molecule detection.
In this paper, we present a fast and robust molecule

detection algorithm that utilizes parallel application of
adaptive histogram equalization15 to identifymolecule
candidates even in the presence of heterogeneous
background. We evaluated the performance of our
new algorithm and compared the results to the search
algorithm widely used in localization microscopy on
both simulated and experimental data. We found that
our new algorithm can identify molecule candidates
with higher efficiency and reliability over a wide range
of background conditions.

RESULTS AND DISCUSSION

Although there are many (F)PALM/STORM analysis
programs available, most of them utilize the “DAO-
FIND” algorithm for molecule detection.3,5,9,16�19 The
schematic of the analysis steps of our new algorithm,
accurate livePALM (a-livePALM), and the DAOFIND
algorithm are shown in Figure 1. In both approaches,
the raw image (Supporting Information, Figure S1)
is first convoluted by a Gaussian kernel to reduce noise
and to enhance the signal (Figure 1a). DAOFIND
directly identifies molecule candidates in the con-
voluted image by setting a threshold based on the
SNR (Figure 1b). Instead of setting a threshold to the
SNR, a-livePALM performs additional local contrast
enhancements by the adaptive histogram equalization
technique. In practice, we calculate a P value (P =
1 � normal cumulative distribution function (CDF))
for each pixel using the standard deviation (Figure 1d)
and the mean background of its surrounding region
(Figure 1e). The P value (Figure 1f) represents the
probability of the pixel to be part of the surrounding
background. Local maxima with a P value below the
threshold (P = 0.08, see Methods section) are as-
signed to molecule candidates (Figure 1g). Squares
and white dots in Figure 1c and g represent co-
ordinates of molecule candidates identified by the
algorithm and the actual coordinates of simulated mol-
ecules, respectively.
The advantage of this approach is that the P value is

insensitive to changes of the SNR and the SBR, and
significantly enhances signal contrast with minimal
distortion of the image. To show the difference of the
signal enhancement methods used by DAOFIND and
a-livePALM, we generated an image of five molecules
placed over a linearly increasing background and
processed it by DAOFIND and a-livePALM (Figure 2).
The intensity profile of the molecules in the absence of

Figure 1. Localization microscopy image processing with the DAOFIND and a-livePALMmolecule detection algorithms. The
red and blue arrows denote procedures run in DAOFIND and a-livePALM, respectively. In DAOFIND, the raw image is first
convoluted with a Gaussian filter (a). The SNRs are calculated (b) and a threshold is set to identify molecule candidates (c). In
a-livePALM, the local background parameters (standard deviation (d) and mean (e)) are computed from the raw image
(Supporting Information, Figure S1). A P value is calculated andmapped for every pixel (f). Molecule candidates are identified
as local maxima with the P value below the chosen threshold (g).
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noise is shown in Figure 2a as a reference. By adding
linearly increasing background and Poisson noise, a
significant decrease of contrast is generated in the
intensity profile (Figure 2b). The DAOFIND algorithm
takes the Gaussian-convoluted image from Figure 2b
and generates the SNR map for each pixel. A top-hat
filter with grayscale opening was used to generate the
SNR map (Figure 2c). The intensity profile shows an
overall flattening of the background. However, back-
ground features are also enhanced in a way that
resembles signals from actual molecules. This could
lead to registration of false positive molecules. For
comparison, the P value map from the a-livePALM
adaptive histogram equalization algorithm and
its corresponding intensity profile are shown in
Figure 2d. The contrast of the molecule signal is
evenly enhanced over the entire image, and the
intensity profile is easily distinguishable from the
background.
To assess the efficiency and accuracy of molecule

detection, we compared a-livePALM against our pre-
viously published algorithm, livePALM,20 and several

publicly available fast programs: QuickPALM,16

MaLiang,9 and rapidSTORM.21 Two parameters, recall
and precision, are employed to evaluate the perfor-
mance of the search algorithm. Recall is defined as
the ratio of the number of true positive molecules to
the total number of simulated molecules. A true posi-
tive molecule is a molecule with a returned coordinate
within a certain distance (D) of the actual coordinate.
Molecules outside of D are classified as false positive
molecules. Precision is defined as the ratio of the
number of true positive molecules to the number of
all detected molecules (i.e., trueþ false). We simulated
1000 images (100 � 200 pixels) with molecules ran-
domly placed over a linearly increasing background
(Supporting Information, Figure S1). These simulations
were performed for varying molecule densities (0.1�1
molecule/μm2). To account for the fact that the differ-
ent algorithms compared in this work use different
molecule localizationmethods, we chose a rather large
value of 1.5 pixels for D to minimize the influence of
this variable on recall and precision (Supporting Infor-
mation, Figure S2). Recall and precision results are

Figure 2. (a) Simulated image of five molecules without background (top). This intensity profile (bottom) serves as a
reference. (b) Image after adding a linearly increasing background and Poisson noise (top) and its intensity profile (bottom).
(c) SNRmapofDAOFIND (top) and its intensity profile (bottom). (d) P valuemapof a-livePALMalgorithm (top) and its intensity
profile (bottom). The color scale of the P value map (d, top) has been inverted to enable a comparison with the other maps.
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plotted as a function of molecule density (Figure 3a,b).
Different sets of parameters were tested for the three
publicly available programs to optimize their perfor-
mances (Supporting Information, Figure S3); selected
parameters used for the performance evaluation
on our data are shown in Supporting Information,
Figure S4�S6. In general, except for rapidSTORM, the
precision was high over the entire range of the mole-
cule density, while the recall generally decreased with

increasing density. Among the programs evaluated,
our new algorithm, a-livePALM, showed the highest
efficiency (recall) of identifying molecule candidates
while maintaining a high precision.
To directly quantify the molecule detection perfor-

mance of the algorithm, we tested two of the best
algorithms from the first evaluation, livePALM and
a-livePALM, on a different set of simulated molecules
(intensity, I0, of 150, 200, or 250 photons) that are well
separated from each other, placed over a range of
background conditions (Gaussian noise, Ni,j(δ), and
background (BG) level, Nbg, see Methods) within the
same image. A sample image is shown in Supporting
Information, Figure S7. To obtain a meaningful com-
parison between livePALM and a-livePALM, we used
the same molecule localization algorithm, the max-
imum likelihood estimation method.10 We conducted
the molecule search on simulated images using two
different thresholding methods for livePALM. The
search parameters (low photon threshold and SNR)
of livePALM were adjusted either for high precision
(precision > 0.90 for over 50% of molecules, precision
optimized, PO, Figure 4b,e) or for high recall efficiency
(maximum recall, recall optimized, RO, Figure 4c,f).
a-livePALM (Figure 4d) and livePALM PO (Figure 4e)
showed a comparable result for the precision, but a
markedly lower recall for livePALM PO as the back-
ground level increased (compare Figure 4a and b). The
recall also deteriorated as the number of photons
decreased andGaussian noise increased. For livePALM,
the recall of molecules with only 150 detected photons
is low, especially with high background. The precision
values computed from these few molecules are more

Figure 3. Performance assessment of various image recon-
struction algorithms (QuickPALM, RapidSTORM, MaLiang,
livePALM, and a-livePALM). By using a set of simulated data
images with varying molecule densities, the performances
were evaluated by analyzing the (a) precision and (b) recall
parameters.

Figure 4. Recall and precision performances of the a-livePALM and livePALM programs. Three different sets of simulated
images (intensity of 150, 200, or 250 photons/molecule), synthesized with different background (BG) levels (2�20 photons)
and standard deviation (δ) of added Gaussian noise (1, 2, or 3 photons) were analyzed. The molecule detection performance
evaluatedby recall andprecision values froma-livePALM (a, d), livePALMwith PO threshold condition (b,e) and livePALMwith
RO threshold condition (c,f) are shown.
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prone to fluctuations and could result in nonincre-
mental changes in the precision over varying BG levels
(Figure 4e). a-livePALM showed a high level of recall for
the entire range of imaging conditions. In real experi-
ments, the recall parameter should be maximized to
improve the final image quality of the biological
structure of interest. The recall can be improved by
using the livePALM RO condition (Figure 4c), how-
ever, only at the expense of its precision performance
(Figure 4f). These comparisons demonstrate the over-
all high efficiency and reliability of a-livePALM over
wide ranges of SNR and SBR while using only a single
thresholding parameter.
The overall precision of the coarsely selected mole-

cule data set can still be improved if false positive
molecules can be removed efficiently by filtering. To
this end, we took the data set which yielded ∼50%
precision from livePALM analysis and plotted the dis-
tributions of the number of photons, background, the

width of the point spread function, and the localization
precision, of true and false positive molecules in Sup-
porting Information, Figure S8 and 2D/3D plots of
fitted parameters in Figure 5. Two example images of
true and false positive molecules are shown in Sup-
porting Information, Figure S9. Multiparameter filter-
ing revealed that, due to considerable overlap in the
parameter distributions of true and false positive mol-
ecules, a significant fraction (∼20%) of false positive
molecules could not be eliminated from the data
(Supporting Information, Table S1). By contrast, a-live-
PALM yields a final false positive population of merely
1% on the same data set. These results underscore
the importance of properly identifying molecules from
the raw images in the first place and not relying on
postfiltering.
As the image reconstruction is based on processing

thousands of image frames, it is of utmost importance
that the analysis algorithm can run at high speed to

Figure 5. 2D/3D plots of fitted parameters (photon counts, localization precision, and sigma) from livePALM (RO) and
a-livePALM on simulated data (Supporting Information, Figure S7). 2D plots of fitted parameters of (a) livePALM and (b)
a-livePALM are shown. The data were filtered with 100�500 photons, <50 nm localization precision, and 1�2 pixels sigma
(shown by dotted lines). The corresponding 3D plots of panels (a) and (b) are shown in panels (c) and (d). Red and blue dots
represent false positive and true positive molecules, respectively.
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keep upwith image acquisition. Early versions of image
reconstruction software for localization-based super-
resolution microscopy were laborious and took many
hours until completion, so that acquisition parameters
(laser intensity, acquisition time, etc.) were difficult to
adjust during the experiment. As mentioned above,
numerous algorithms have been developed to accel-
erate image reconstruction, however, mostly in the
molecule localization step.9,10,16,18,20 This is primarily
because relatively simple, hence fast, algorithms have
been used for the molecule detection step. In the
broader image-processing field, various highly sophis-
ticated denoising techniques are known that can deal
with images with varying background.11,12 Naturally,
advanced molecule detection algorithms come at the
expense of added computational complexity. To avoid
slowing of the analysis whilemaintaining performance,
we have coded our algorithm so that it utilizes the
parallel processing power of GPUs for the molecule
detection step. As a result, our software achieves a
processing speed comparable to state-of-art fast
software even with the additional background
estimation (Figure 6 and Supporting Information,
Figure S10).
Comparison of livePALM and a-livePALM on experi-

mental data further highlights the strengths of our new
method. Figure 7 shows PALM images reconstructed from
1600 frames of raw data of the fusion protein RITA-
mcavRFP22 in live HeLa cells analyzed by livePALM RO
and a-livePALM. The raw wide field image shows
considerable SNR heterogeneity within the image
(Supporting Information, Figure S11). The overall fluo-
rescence intensity varied in time due to power adjust-
ment of the 405-nm laser and photobleaching of the
molecules (Supporting Information, Figure S12). We
found a significantly higher molecule detection effi-
ciency using our new algorithm, in agreement with our
findings on simulated data. We plotted these mol-
ecules with the same brightness and contrast setting
for a direct comparison (Figure 7a�d). A total of
273 751 and 474 385 molecules were identified by
livePALM RO and a-livePALM, respectively (Figure 7e),
whereas livePALM PO detected only 98 013 molecules
(Supporting Information, Figure S13). In regions
with high SNR, livePALM performed equally well as

a-livePALM. In regions with lower SNR, livePALM per-
formed poorly, as already seen with simulated images
(Figure 4). As a result, some structures were missing
from the image (indicated by arrows). In particular,
for livePALM, the microtubules located in the upper
third of the reconstructed image are missing due to
the high background level (Supporting Information,
Figure S11).

CONCLUSIONS

Our new molecule detection algorithm is capable of
identifying molecules in (F)PALM/STORM images with
high efficiency and reliability even in the presence of
widely varying background. These improvements yield
an enhanced reliability in quantitative data analysis
and higher resolution in the final reconstructed
images. The significantly improved detection yield
and reliability will benefit experiments that require a
fast time resolution as well as more accurate quantifi-
cation of molecules.23�26 Our algorithm will also be-
come useful for multicolor super-resolution imaging
using fluorescent protein markers, where the signal of
fluorophores may be considerably compromised by

Figure 6. Processing speed of the a-livePALM algorithm
implemented in Matlab, C, and CUDA (GPU processing).

Figure 7. Performance of livePALM and a-livePALM mole-
cule detection algorithms applied to experimental data.
PALM images of microtubules in live HeLa cells, labeled
with the fusion protein RITA-mcavRFP, were reconstructed
by using (a,c) the livePALM RO and (b,d) a-livePALM algo-
rithms. Arrows indicate structures reconstructed by a-live-
PALM, but missed by livePALM. Scale bars, 5 μm (a,b) and
1 μm (c,d). (e) Accumulated number of molecules identified
by livePALM PO, livePALM RO, and a-livePALM upon pro-
cessing 1600 image frames.
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the autofluorescence from the cell. Although we have
limited ourselves to single peak fitting of the identified
molecules in 2D imaging in this work, our search

algorithm is directly applicable to multipeak fitting
methods as well as 3D imaging methods that have
been introduced in recent years.17,27,28

METHODS
Microscopy. HeLa cells were transiently transfected with a

RITA-mcavRFP fusion construct, a tubulin binding protein
fused with a photoconvertible version of the red fluorescent
protein.22 PALM image acquisition was performed at room
temperature (24 �C) on a modified inverted microscope
(Axiovert 200, Zeiss, Jena, Germany) equipped with a high NA
oil immersion objective (60�, 1.45-NA oil immersion, Olympus,
Hamburg, Germany). We employed three diode-pumped solid-
state lasers, with wavelengths 561 nm (GCL-150-561, Crysta-
Laser, Reno, NV), 473 nm (LSR473-200-T00, Laserlight, Berlin,
Germany) and 405 nm (CLASII 405-50, Blue Sky Research,
Milpitas, CA) for excitation and photoactivation of the fluoro-
phores. The laser sources were combined via appropriate
dichroic mirrors (AHF, Tübingen, Germany) and guided through
an AOTF (AOTFnC-400.650, A-A, Opto-Electronic, Orsay Cedex,
France) to control the laser intensities at the sample prior to
coupling into a single mode fiber (OZ Optics, Ottawa, Ontario,
Canada). The fluorescent proteins were converted from their
green to their red emitting forms using 405-nm light of low
intensity (0�10 W/cm2) and subsequently imaged by 561-nm
illumination (200�400 W/cm2) with an EMCCD camera (Ixon
DV887ECS-BV, Andor, Belfast, Northern Ireland) at 100 ms time
resolution. After passing the excitation dichroic (z 405/473/561,
AHF, Tübingen, Germany), fluorescence emission was filtered
by a bandpass filter (617/73).

Image Simulation. To evaluate the performance of super-
resolution algorithms, synthesized test images are routinely
used.13,14 We have examined the performance of our search
algorithm with simulated single fluorescence emitters with
varying SNR and background. All simulated images were gen-
erated by using MATLAB.

Considering the finite pixel size, the final simulated signal is
given by

Fi, j ¼ Pois(I0

Z
A

PSF(u, v) du dvþ bgi, j) ð1Þ

Here, Pois(x) is a Poissonian random number with a mean value
of x. I0 is the number of photons registered for a given
fluorophore. The integral extends over the area of each pixel,
A. The point spread function, PSF(x, y), is approximated by a two-
dimensional Gaussian function,

PSF(x, y) ¼ 1
2πσ2

exp(
(x � x0)

2 þ (y � y0)
2

2σ2
) ð2Þ

where (x0, y0) is the position of the emitter. The background
level of each pixel (e.g., from diffusing impurity molecules or
thermal noise),

bgi, j ¼ Nbg þNi, j(δ) ð3Þ
is modeled by a constant background or a linearly increasing
background, Nbg, and is additionally varied by Gaussian noise,
Ni,j(δ), with standard deviation, δ.

Molecules with different SNR and SBR were synthesized
within the same image to model heterogeneous background
(Supporting Information, Figures S1 and S7). For the nonover-
lapping molecules in Figure S7, each molecule was randomly
plotted in the center (10� 10 pixels) of a block (30� 30 pixels).
Three types of molecules (I0 = 150, 200, or 250 photons) were
used for the evaluation. For each molecule, the background
level (Nbg) was varied from 2 to 20 photons with the stan-
dard deviation of the additional Gaussian noise, δ, of 1, 2, or 3
photons. The resulting SNR of the final image ranged from 1.3 to
3.3; the SBR ranged from 0.4 to 6.8. We note that the SNR of a
molecule is defined by SNR = (I� bg)/σ,29 where I and bg are the

maximum intensities of the single molecule signal and the
background, respectively; σ is the standard deviation of the
background.

Description of the Algorithms for Data Processing. Identification
of molecule candidates involves three steps within our new
algorithm: noise reduction, local background estimation, and
selection of appropriate local maxima according to the local
background condition. The general outline of this process is
shown in Figure 1. For noise reduction, we convoluted the raw
images with a Gaussian kernel,13 with a standard deviation,
σ, depending on the data set. Typically, we used σ = 1 pixel for
2D localization images. To estimate the local background, each
image is first subdivided into small local areas (11 � 11 pixels).
The background of each local area is quantified by the mean
value and the standard deviation of its larger surrounding
area (31 � 31 pixels) to improve the sampling. Using the local
mean background and standard deviation, the P value of each
pixel value is calculated. Only pixels with a P value above a
user-defined threshold are selected, and local maxima (within
7 � 7 pixels) among these pixels are identified as molecule
candidates. Small subimages (7 � 7 pixels) around these local
maxima are extracted for singlemolecule localization. For pixels
on the boundaries, which are not surrounded by a 31� 31 pixels
area for background calculation, the background parameters
were transferred from the nearest nonboundary pixels. Differ-
ent P values were tested for the synthesized data (Supporting
Information, Figure S14). A P value of 0.08 produced optimal
results for identifying molecules. Lower P values yield high
precisions, but lower recalls. By contrast, a high P value yields
a high recall, but a lower precision. In the experimental setting,
one can find an appropriate P value by minimizing the number
ofmolecules identified from areas void of fluorescentmolecules
(e.g., areas where there are no cells).

For the subsequent single molecule localization step, a two-
dimensional Gaussian (plus a constant background) model
is fitted to the molecule candidates isolated from the raw data.
Various algorithms have been suggested to localize single
molecules. Least squares fitting,30 maximum likelihood
estimation,31 the fluoroBancroft algorithm,6 and the wavelet
analysis32 are common approaches. Among these, we use
Gaussian fitting with the recently developed GPU-based max-
imum likelihood estimator (MLE) algorithm.10 This technique
achieves theoretically minimum uncertainty (Crámer-Rao lower
bound, CRLB) while vastly speeding up the single molecule
localization process.

The final super-resolution image is reconstructed from the
coordinates of the localizedmolecules. Molecules that appear in
n successive frames and are spatially close (<100 nm) are
considered to be identical. In the final super-resolution image,
the molecule is plotted n times with the weighted value of 1/n
so that the intensity of the reconstructed image represents the
real density of molecules.

Software and Hardware Implementation. The data processing
procedures were run in MATLAB R2010b (The Mathworks, USA)
environment. The workflow of the program is shown in Sup-
porting Information, Figure S15. Both the CPU based C-code
(green boxes) and the GPU based C-code (red boxes, Nvidia
CUDA, http://www.nvidia.com/object/cuda_home.html) are
compiled to MATLAB mex files. The local background esti-
mation (CPU) and the Gaussian noise filtering of the image
(GPU) are run in parallel since those computations are totally
independent of each other. On the basis of the background
parameters and the denoised image, the normal CDF of each
pixel is calculated in the GPU. Those pixels with P values
below a certain threshold are selected, and the local maxima
among these pixels are determined as molecule candidates.
The arrays around the candidates are extracted and finally
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passed into the GPU global device memory for single
molecule localization.

The software was run on a personal computer with an
Intel(R) Core i7-2600 processor clocked at 3.40 GHz and 8.0 GB
memory. A NVIDIA GeForce GTX 560Ti graphics card with 1.0 GB
memory was used for GPU based computation. For a typical
image size of 512 � 512 pixels, acquired by the camera, the
processing time is 15�30 ms per image, depending on its
complexity. The speed is comparable to the maximum full
frame rate of current EMCCD cameras and, therefore, allows
real-time data processing.
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