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Point spread function (PSF) engineering is an important 
technique to encode the properties (e.g., 3D positions, color, 
and orientation) of single molecule in the shape of the PSF, 
often with the help of a programmable phase modulator. 
Deformable mirror (DM) is currently the most widely used 
phase modulator for fluorescence detection as it shows 
negligible photon loss. However, it relies on careful 
calibration for precise wavefront control. Therefore, design 
of an optimal PSF not only relies on the theoretical 
calculation of maximum information content, but also the 
physical behavior of the phase modulator, which is often 
ignored during the optimization process. Here, we 
developed a framework of PSF engineering which could 
generate a device specific optimal PSF for 3D super-
resolution imaging using DM. We used our method to 
generate two types of PSFs with depths of field comparable 
to the widely used astigmatism and Tetrapod PSFs, 
respectively. We demonstrated the superior performance 
of the DM specific optimal PSF over the conventional 
astigmatism and Tetrapod PSF both theoretically and 
experimentally. 

 

Single molecule localization microscopy (SMLM) has successfully 
overcome the diffraction limit, making it possible for researchers to 
resolve biological structures with nanoscale resolution[1]. Over the 
past ~15 years, tremendous efforts have been made to extend this 
technology from 2D to more dimensions, such as axial position, 
color information, fluorescence polarization, motion diffusion, and 
lifetime[2]. Among these developments, precise 3D imaging is 
probably the most important one. A variety of methods for 3D 
super-resolution imaging have been devised[3], and PSF 
engineering is the most used method to obtain the 3D information. 
Through clever design of PSF, the 3D information of an emitter can 

be precisely extracted from its shape in the 2D images, even 
optimized for different imaging range[4].  

The simplest and most widely-used PSF engineering method is to 
insert a cylindrical lens to create an astigmatism PSF with its 
ellipticity depending on the z position within  a limited axial range 
(~1μm)[5]. To extend 3D imaging to a larger axial range, 
engineered PSFs with more complex pupil functions are normally 
needed. There are two main ways to generate these engineered 
PSFs. One is to fabricate specific transmission phase masks for 
different types of PSFs. Although the requirement of the precision 
for fabrication of phase mask has been lowered by using liquid 
immersion recently[6], phase masks lack the flexibility for various 
biological applications and system aberration correction. A more 
general alternative way is to employ a programmable phase 
modulator in the Fourier plane of the optical system. Adaptive 
optics devices such as spatial light modulator (SLM) and DM are 
commercially available for this purpose. SLM has the advantage of 
large number of pixels. Therefore, it can output a complicated phase 
even with sharp phase jumps (i.e., DH-PSF[7]). However, only one 
polarization of light can be modulated by SLM, halving the precious 
fluorescence photon budget in SMLM experiments. DM shows 
negligible photon loss and is very suitable for phase modulation in 
fluorescence imaging. However, it has limited number of actuators, 
making it challenge to accurately output the designed phase pattern. 

To design optimal PSFs for different imaging conditions, a variety 
of algorithms have been proposed. First approaches optimized the 
Zernike coefficients of the pupil function by minimizing the 3D 
Cramér-Rao lower bound (CRLB) [8][9]. A family of “Tetrapod” 
PSFs were found to achieve the best theoretical precision within 
predefined axial range[4]. Recently, deep-learning based methods 
were also employed to optimize PSFs for dense 3D imaging[10]. By 
jointly optimizing the PSF generation and localization convolutional 
neuron network, the parameterized phase mask which yields 
superior reconstruction for high-density 3D localization could be 
obtained. Furthermore, heuristic PSFs with analytical pupil 
functions were also introduced which achieved near optimal 
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performance compared to the Tetrapod PSFs[11]. However, none 
of these algorithms were designed by taking account for the 
physical response of the phase modulator used. 

Here, we used DM as the phase modulator which is most photon 
efficient and convenient for fluoresce PSF engineering comparing to 
the other phase modulation methods. However, calibration of the 
DM is often a prerequisite that cannot be neglected for precise 
wavefront control[12][13]. In this work, we carefully calibrated the 
experimental DM influence function of each actuator by using an 
interferometer. Instead of optimizing the coefficients of Zernike 
polynomials, we directly used the influence function of each 
actuator as basis function of the pupil function optimized. We call 
the PSF obtained by this way as DM-optimized PSF (DMO PSF). The 
feasibility of the DMO PSF is verified by high-quality 3D SMLM 
images, which are reconstructed using either the spline fitting 
method [14] or deep learning network [15]. 

 

Fig. 1.  (a) Schematic of the PSF optimization using a deformable mirror, inset 
is the control panel of a DM with 140 actuators. Color indicates the relative 
voltage applied to each actuator. (b) The example influence functions of the 
DM. (c) Projection of the pupil function of DH-PSF on DM.  

As shown in Fig. 1a, we equipped our SMLM system with a DM 
(DM140A-35-P01, Boston Micromachines) placing in the Fourier plane 
of the microscope, which allowed us to modulate the pupil function 
with its 140 actuators (Fig. S1). For the practical DM calibration, we 
follow the method in Ref. [16], which utilizes a Twyman-Green 
interferometer to measure the surface deformation of the DM. Here, we 
only calibrated the influence function of each actuator instead of a set of 
Zernike modes (Supplementary Note 1). Comparing to the calibrated 
Zernike modes, the influence functions can offer more accurate 

wavefront design as they represent original physical activation of the 
actuators and avoid the approximation errors which often happens 
during the computation of the Zernike modes.  

Fig. 1b shows the calibrated influence functions of a DM for a few 
represented actuators. As shown in Fig. 1c, we decomposed the 
phase of a DH-PSF using DM influence functions. The residual error is 
quite large, limiting the practical usage of some complex PSFs with 
DM. Therefore, it is important to take account for the response of the 
DM actuators when designing a PSF engineered by DM. It is worth to 
note that the effect of an influence function spreads over neighboring 
actuators (Fig. 1b). Therefore, the total 140 influence functions were 
used for the optimization process, although the aperture of the 
objective often does not fill the whole active area of the DM.  

Since CRLB corresponds to the limit of attainable precision of 
single molecule localization, we optimize the DM-engineered phase 
𝜓𝐷𝑀 with respect to CRLB:  

𝜓𝐷𝑀 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜓𝐷𝑀∈ℝ

{𝐶𝑅𝐿𝐵3D, avg + 𝛼𝑅avg(𝑃𝑆𝐹)}, 

where 𝐶𝑅𝐿𝐵3D, avg = 1/𝑁𝑧 ∑ (𝐶𝑅𝐿𝐵𝑥,𝑧 + 𝐶𝑅𝐿𝐵𝑦̑,𝑧 + 𝐶𝑅𝐿𝐵𝑧̑,𝑧)𝑧∈Ζ  

is the averaged 3D CRLB over 𝑁𝑧 discrete z positions in a predefined 
axial range Ζ. In this work, we used 𝐶𝑅𝐿𝐵3D, avg with z step of 100 

nm for 1.2 μm axial range PSF and 200 nm for 6 μm axial range PSF.  

𝑅avg(𝑃𝑆𝐹) = 1/𝑁𝑧 ∑ (∑ (𝑝𝑥
2 + 𝑝𝑦

2)𝑝𝑥,𝑝𝑦
× 𝑃𝑆𝐹𝑧(𝑝𝑥, 𝑝𝑦))𝑧∈Ζ , 

where (𝑝𝑥 , 𝑝𝑦) represents pixel coordinates with the center of PSF 

model as zero. 𝑅avg(𝑃𝑆𝐹) term is used to confine the spatial extent 

of the PSF to reduce overlap. 𝛼 is a hyper-parameter, which we set 
as 0 and 30 for the 1.2 μm and 6 μm PSF optimization, respectively. 
It is worth to note that one can also use different weights for CRLB 
xy and z to give different importance between lateral and axial 
localization precision. To implement the optimization, we used the 
explicit gradient derivation (Supplementary Note 2 and 3) and the 
interior-point method of the fmincon function in Matlab. 

 

Fig. 2. Comparison of astigmatism PSF and DMO Saddle-point PSF. (a) 
Astigmatism PSF (91 mλ rms). Projected pupil function on DM (top) and 
corresponding theoretical PSF (bottom). (b) DMO Saddle-point PSF as in (a). 
(c) The sqrt (CRLBxyz) of the astigmatism PSF and DMO Saddle-point PSF as 
a function of z. (d) The sqrt (CRLB3D) of the astigmatism PSF and DMO 
Saddle-point PSF as a function of z. All CRLB is calculated with a full vectorial 

PSF model [17] with the parameters: NA 1.5 for oil objective, 1.35 for silicone 
oil objective; pixel size 108 nm for x, y; wavelength 660 nm; refractive index 
(RI)1.518 for oil objective, 1.405 for silicone oil objective, assuming RI match 
for both cases; 2000 photons per emitter and a background of 20 photons 
per pixel. The same parameters are used throughout this work unless noted 
otherwise. Scale bars, 1μm. 

Considering that searching the DM control signal in a high 
dimensional parameter space (140 dimensions for our DM) is time-
consuming and prone to fall into a local minimum, we first searched 
for a solution in a relatively low dimensional space using all 21 
tertiary Zernike polynomials (2 < 𝑛 + |𝑚| ≤ 8 , where n is the 
radial order and m is the angular frequency) as the basis functions. 
This Zernike based pupil function was then decomposed using DM 
influence functions to obtain the realistic pupil function by DM. We 
then continue to optimize the pupil function in the space of the 
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calibrated DM influence functions. We optimized with different 
starting points.  Nevertheless, the DMO PSF normally showed better 
𝐶𝑅𝐿𝐵3D, avg  than that of the PSF generated by Zernike based 

optimal pupil function on DM (~6%-23%, Fig. S2). This is because 
the projection of the Zernike based pupil function to the DM would 
introduce approximation errors. 

 
Fig. 3. 3D SMLM imaging of the Nup96-SNAP-AF647 using (a) astigmatism 
PSF and (b) DMO Saddle-point PSF with an NA 1.5 oil objective 
(UPLAPO100XOHR, Olympus). The bottom panels in (a) and (b) are the 
corresponding experimental PSFs. (c) and (d) are zoomed-in images of 
rectangles in (a) and (b), respectively. White and red arrows denote the near-
focus and defocus NPCs, respectively. (e) and (f) are side view cross-sections 
the 500 nm thick lines denoted in (a) and (b), respectively. Scale bars, 5μm 
(top panels in a and b) and 1μm (bottom panels in a and b; c; d; e; f). 

Most of 3D SMLM applications utilize astigmatism for 3D 
imaging as it is easy to be implemented and data analysis is also 
quite simple even compatible with elliptical Gaussian PSF[4] (Fig. 
2a). However, its 3D imaging capability is not optimal. Therefore, 
we try to use our approach to optimize a PSF with a similar imaging 
depth as a normal astigmatism PSF (~1.2 µm). The resulting pupil 
function and theoretical PSF are shown in Fig. 2b. We call this PSF 
as DMO Saddle-point PSF. Compared to the astigmatism PSF, DMO 
Saddle-point PSF shows more concentrated intensity distribution 
than the astigmatism PSF when defocus, thus improving the overall 
𝐶𝑅𝐿𝐵3D, avg . The localization precision of astigmatism PSF only 

shows slightly better resolution near the focus (+- 140 nm). 
However, its performance decreases dramatically when the 
imaging plane is bit away from the focus, as the localization 
precision is more than 3 times worse between focus and ±600 nm 
axial positions (Fig. 2c and d). In comparison, DMO Saddle-point 
PSF maintains a relatively uniformed resolution over the axial range 
being optimized. This property is quite important for the 

quantitative analysis of biological structures over a relatively large 
imaging range. Furthermore, the localization precision of x and y for 
an astigmatism PSF is asymmetry about the focus which could 
potentially distort the reconstructed image even in 2D. The 
localization precision of DMO Saddle-point PSF showed preferable 
symmetry resolution along the x and y direction at all axial positions. 

 

Fig. 4. Fourier ring correlation (FRC) analysis of the super-resolution images 
within focus (+-140 nm) and defocus area (-500~-200 nm and 200~500 nm) 
imaged using (a) astigmatism PSF and (b) DMO Saddle-point PSF.  

To test the performance of the DMO Saddle-point PSF on the real 
biological sample, we imaged the nucleoporin Nup96 in U2OS cells 
using spline fitting method (Supplementary Note 4). Due to its 
stereotypical 3D structure, nuclear pore complex is widely used as a 
quantitative reference structure[18]. Here, we labeled the genome 
edited Nup96-SNAP cells with BG-AF647 fluorescent dyes. For 
comparison, we imaged Nup96 using both astigmatism and DMO 
Saddle-point 3D imaging methods (Fig. 3 a and b, Visualization 1 
and 2). As shown in Fig. 3 c, d, e, and f, both methods could resolve 
the ring structure in x-y top view and bilayer structure in x-z cross 
section. However, in the zoomed image (Fig. 3c and d), the difference 
of the quality of the reconstructed images could be clearly observed. 
Close to the focus, both methods could resolve the individual Nup96 
proteins in the symmetric unit of the NPC (white arrows in Fig. 3c and 
d). However, when it is slightly away from the focus (> 200 nm), the 
individual Nup96 protein can only be resolved by DMO Saddle-point 
PSF (red arrows in Fig. 3 c and d). This observation was further 
verified in the FRC analysis[19] (Fig. 4).  For the regions close to focus 
(<140 nm), the FRC resolution is 31.1 nm and 31.6 nm for DMO 
Saddle-point PSF and astigmatism PSF, respectively. The FRC value 
for DMO Saddle-point PSF is almost constant between defocus 
regions (-500~-200 nm and 200~500 nm) and the near focal region, 
while it is more than twice as big (71.4 nm) for astigmatism PSF. This 
result is well in agreement with the theoretical calculation as shown 
in Fig. 2. Due to the superior performance of DMO Saddle-point PSF 
compared to astigmatism PSF, it has a great potential to totally replace 
the widely used astigmatism PSF.  

To further extend the depth of field of 3D super-resolution 
imaging, we then optimized a DMO Tetrapod PSF that has a 6-μm 
axial detection range which could image the entire nucleus without 
scanning. We first optimized a 6-μm theoretical Tetrapod PSF based 
on the Zernike polynomials and projected it on the DM to get a 
practical usage. Then a DMO Tetrapod PSF is optimized for further 
improvement. As shown in Fig. S2 c and d, the 𝐶𝑅𝐿𝐵3D, avg  of the 

DMO Tetrapod PSF is improved by 8% compared to the projected 
one. To demonstrate the 3D resolving capability of the DMO 
Tetrapod PSF, we imaged the whole nucleus of Nup96 in the U2OS 
cells (Fig. 5, Visualization 3). To account for the RI mismatch, we 
used an NA 1.35 silicone oil objective (UPLSAPO100XS, Olympus) 
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and embedded the sample in RI matched buffer using 2,2’-
thiodiethanol. Since the relatively large size of the DMO Tetrapod 
PSF, the lateral overlap of the emitter PSFs is commonly observed. 
Here, we used the  𝑅avg(𝑃𝑆𝐹) term (𝛼 = 30) to control the size of 

the optimized PSF. The distance between the two main lobes was 
reduced by ~20% compared to that of PSFs optimized without 
using 𝑅avg(𝑃𝑆𝐹)  term ( 𝛼 = 0 ) (Fig. S3). Deep-learning based 

algorithm, DECODE[15], was used to analyze the DMO Tetrapod 
PSF encoded single molecule data (Supplementary Note 4). As 
shown in Fig. 5c and d, the structure of the whole nuclear envelope 
could be nicely reconstructed. In the zoomed image as shown in Fig. 
5 e and f, we were able to resolve the nuclear pores as rings both in 
the top and bottom of the nuclear envelope. The overall FRC 
resolution is 48.3 nm (Fig. S4). 

 

Fig. 5. Whole-nucleus 3D super-resolution imaging of the Nup96-SNAP-
AF647. (a) 3D super resolution images of the whole nucleus. (b) DMO 
Tetrapod experimental PSF. (c) Overview of a 3D reconstructed nucleus 
rendered by ViSP[20]. (d) Side view cross-section of the 2 µm thick line 
denoted in (a). (e) and (f) are zoomed views of the top surface and bottom 
surface of the nucleus, denoted by the rectangle in (a). Scale bars, 5μm (a) and 
1μm (b; d; e; f). 

In conclusion, we developed a DM specific PSF optimization 
method. In contrast to the previous method using Zernike 
polynomials as the solution space, we employed the influence 
functions of the DM as the solution space which could represent the 
behavior of the device best. To demonstrate the feasibility of our 
algorithm, we designed two DMO PSFs with different imaging depths: 
DMO Saddle point PSF and DMO Tetrapod PSF. We showed both in 
simulated and experimental data that DMO Saddle point PSF has 
almost twice better averaged CRLB than that of an astigmatism PSF, 
while maintaining a relatively constant resolution over the axial range 
being optimized (~1.2 µm).  Furthermore, the DMO Tetrapod PSF 
could further improve the conventional “optimal” Tetrapod PSF by 
about 10% - 20 % on the DM and successfully super resolved the 

nuclear pores on the whole nuclear envelope. Our code is open source 
with detailed instructions in Ref. [21]. We believe that this work will 
greatly improve the widely used astigmatism PSF and generally 
improve the DM based PSF engineering.  
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